Charm physics at the Tevatron Run II

Mario Campanelli

DPNC Université de Genève

Introduction: why?

- CDF and D0 are known in the physics community for having discovered the top quark, and running at the world's largest energy accelerator
- Does it make sense to study low-energy events, a field dominated by dedicated experiments (b factories, FOCUS, CLEO III)?

Introduction: why c physics at Tevatron

- Extremely high cross section
- □ σ(bb): TeV ≈ 50 μb, cc ×10
- $\Upsilon(4S) \approx 1 \text{ nb}, Z0 \approx 7 \text{ nb}$
- Relatively "clean" events

But:

- Luminosity 1000x less than bfactories
- Non optimal calorimetry-PID
- •Large combinatorics

The accelerator

- The Tevatron is the largest-energy accelerator ever built.
- It serves two collider experiments (CDF and D0), plus several fixed targets (KTeV, NuTeV, DoNuT etc.)
- From 2001 it started phase 2 to increase collider luminosity

The progress of Tevatron luminosity

First Tevatron goals (2x10³², for an integrated luminosity of 2 fb⁻¹ over a 2-3 year period and 15 fb⁻¹ before LHC) had to be revised. Now the accelerator is much better understood, performances exceed (revised) expectations, keeps improving

Detector hardware upgrades for Run II

Both detectors underwent major upgrades for Runll, involving full DAQ system and tracking (all relevant to low-Pt physics) to cope with increased event rate. D0 added solenoid in tracking region.

Trigger issues

1.7 MHz events in central region Only 70 Hz can be stored on tape

Process	Cross-	Event Rate
	section	
Inelastic pp	60 mb	6 MHz
$pp \rightarrow bb$ (b $p_T > 6$ GeV, $ \eta < 1$)	10 μb	1 kHz
$pp \rightarrow WX \rightarrow \ell \nu X$	5 nb	0.4 Hz
$pp \rightarrow ZX \rightarrow \ell \ell X$	0.5 nb	0.04 Hz
pp→tt→WWbb→ℓν	2 pb	0.0002 Hz
bbX		
$pp \rightarrow WH \rightarrow \ell \nu bb$ $(M_{H}=120 \text{GeV})$	15 fb	15 10-7 Hz

Assume L =100x10³⁰ cm⁻²s⁻¹, ℓ=electron or muon

Strategies to trigger on Heavy Flavors

Traditional

(CDF, D0)

New (CDF)

New (CDF)

- Di-lepton dilepton sample
 - pT(μ /e)>1.5/4.0 GeV/c
 - J/ψ modes, masses, lifetime, x-section
 - Yield 2x Run I (low Pt threshold, increased acceptance)
- lepton + displaced track semileptonic sample
 - $pT(e/\mu)>4$ GeV/c 120 μ m<d0(Trk)<1mm, pT(Trk)>2 GeV/c
 - Semileptonic decays (B—&vX), Lifetimes, flavor tagging.
 - B Yields 3x Run I
- Two displaced vertex tracks hadronic sample
 - pT(Trk)>2 GeV/c, 120 μ m<d0(Trk)<1mm, S pT>5.5 GeV/c
 - Fully hadronic B decays (B→hh', Bs→Dsπ, D→Kπ …)
 - Branching ratios, Bs mixing, ...

CDF track trigger Exploit long b, c lifetimes in Trigger L1 track + Si hits = Impact parameter @L2 A first at a hadron collider

XFT (Level 1) measures curvature for tracks with Pt>1.5 GeV with $\sigma(pT)=(1.74\ pT)\%$ (directly used for J/ Ψ dimuon trigger) XFT information is passed to SVT, where it is merged with silicon hits and allows reconstruction (and trigger on) of impact parameter

Basic properties: CDF measurements from two-track trigger

Huge samples of D⁰ and D* from TTT (p_T>2 GeV, d₀>100m, Σ p_t>5.5 GeV) high purity from the decay D*->D⁰ π _{slow}

Distinction between prompt and b decay possible from D⁰ impact parameter

Basic properties: Charm cross section

Done with few runs (limited by systematics)

• $\sigma(D^0)$ pT>5.5 GeV =13.3 ± 0.2 ±1.5 µb

 $\sigma(D^*)$ pT>6.0 GeV =5.2 ± 0.1 ± 0.8 µb

• $\sigma(D^+)pT>6.0 \text{ GeV} = 4.3 \pm 0.1 \pm 0.7 \text{ }\mu\text{b}$

 $\bullet \sigma(D_s^+)pT>8 \text{ GeV} = 0.75 \pm 0.05 \pm 0.22 \text{ µb}$

Published in Phys.Rev.Lett.91:241804,2003

Agrees with Cacciari Nason JHEP 0309, 006 (2003), but on the high side

Basic properties: branching ratios of Cabibbo-suppressed decays and asymmetries

D0 decays other than $K\pi$ seen in mass plot.

$$\Gamma(D^0->KK)/\Gamma(D^0->K\pi)=9.96\pm0.11\pm0.12\%$$

 $\Gamma(D^0->\pi\pi)/\Gamma(D^0->K\pi)=3.608\pm0.054\pm0.040\%$

compare with FOCUS (2003) $\Gamma(D^0->KK)/\Gamma(D^0->K\pi)=9.93\pm0.14\pm0.14\%$ $\Gamma(D^0->\pi\pi)/\Gamma(D^0->K\pi)=3.53\pm0.12\pm0.06\%$

CP asymmetry: tagging the soft π from D* decays.

$$A(D^0->KK) = 2.0 \pm 1.2 \pm 0.6 \%$$

$$A(D^0 -> \pi\pi) = 1.0 \pm 1.3 \pm 0.6 \%$$

Spectroscopy: D_s⁺ D⁺ mass difference

First CDF RunII paper (Phys. Rev. D68,072004,2003)

Careful tracker calibration using D⁰ control sample needed

Best world measurement obtained with limited luminosity

 $M(D_s^+)-M(D^+)=$

99.41±0.38(stat.)±0.21(syst.) MeV

Spectroscopy: orbitally-excited charm mesons

Total angular momentum of a meson: J=s_q+s_Q+L. Depending on relative spin orientation, 4 P-wave mesons (L=1)

In heavy quark limit, masses of mesons with same $j_q = s_q + L$ are degenerate. $1/m_Q$ corrections introduce hyperfine splitting, particularly visible for $j_q = 3/2$ states, decaying via a suppressed D-wave, (width \cong 20 MeV). Width of $j_q = 1/2$ states is about 200 MeV.

BR B->D**

D0 has observed these states in the semileptonic B decay B->µv D** X followed by D** decay.

Measure Br(B-> $\mu\nu$ D** X)*BR(D**->D* π)=

 $(0.280 \pm 0.021 \pm 0.088)\%$

CDF has thousands of events from TTT, aim for a mass measurement with 1 MeV accuracy

New Physics: FCNC $D^0 > \mu \mu \text{ decays}$

SM Br is 3 x 10⁻¹³, can grow by 10⁷ in R-violating SUSY

D0-> $\pi\pi$ used as reference sample

0 events observed, 1.6±0.7 from BG

BR(D⁰-> $\mu\mu$)< 2.5 (3.3)x 10⁻⁶ at 90% (95%) CL (improves PDG by a factor 2)

New physics: observation of X(3872)

New unexpected narrow state observed by Belle in J/Ψππ
 M(X) = 3872.0 ± 0.6 ± 0.5 MeV

Confirmed by both Tevatron detectors CDF observes 11 σ signal with mass (hep-ex/0312021)

 $M(X) = 3871.3 \pm 0.7 \pm 0.4 \text{ MeV}$

D0 has 4.4 σ with

 $\Delta M(X-\Psi(2S)) = 766.4 \pm 3.5 \pm 3.9 \text{ MeV}$

What is it?

- •Charmonium?
- •DD molecule?

Final remarks

- Despite non-dedicated, experiments at Fermilab play a major role in the field of charm physics due to huge cross section and dedicated triggers
- In particular, CDF SVT proved to be a huge success (so far, all papers published by CDF are on charm!), D0 about to install a similar system very soon
- Tevatron started to work closer to expectations, there is an even larger sample ahead of us